Instalar DeepSeek en tu sistema sin GPU, pasos:
Especificaciones del Entorno de Pruebas
Componente | Detalle |
---|---|
SO | Ubuntu Cinnamon 24.04 LTS x86_64 |
Kernel | 6.8.0-51-generic |
CPU | Intel i7-6820HQ (8 núcleos) @ 3.600GHz |
GPUs | AMD ATI Radeon HD 8830M / R7 250 / R7 M465X Intel HD Graphics 530 |
RAM | 15.882 GB (3.716 GB en uso) |
Resolución | 1440x810 |
Escritorio | Cinnamon 6.0.4 |
1. Instalar Git LFS
sudo apt-get install git-lfs
git lfs install
2. Clonar el repositorio
cd /opt
sudo mkdir deepseek && sudo chown $USER:$USER deepseek
cd deepseek
git clone https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
3. Crear y activar un entorno virtual
python -m venv deepseek-env
source deepseek-env/bin/activate
4. Instalar dependencias optimizadas para CPU
pip install torch --index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.41.0 accelerate sentencepiece
5. Crear el archivo deepseek_local.py
6. Para ejecutar
python deepseek_local.py
Observación de Rendimiento
Tiempo de Procesamiento: En mi computadora (Intel i7-6820HQ), cada respuesta toma un promedio de 150 segundos (2.5 minutos).
Parámetros de Optimización
Parámetro | Valor Original | Rango Recomendado | Impacto |
---|---|---|---|
max_new_tokens |
256 | 64 - 512 | Reduce tiempo de generación. Menos tokens = respuestas más cortas |
temperature |
0.7 | 0.1 - 1.0 | Controla aleatoriedad. Menor valor = respuestas más determinísticas |
top_p |
0.9 | 0.5 - 1.0 | Probabilidad de tokens. Menor valor = más predecible |
top_k |
50 | 10 - 100 | Filtra los k tokens más probables. Reduce complejidad computacional |
repetition_penalty |
1.1 | 1.0 - 2.0 | Evita repeticiones. Mayor valor = menos repetición |
Consejos:
- Reducir
max_new_tokens
disminuye significativamente el tiempo de procesamiento - Valores más bajos de
temperature
generan respuestas más consistentes - Experimentar con estos parámetros para encontrar el equilibrio ideal
Ejemplo de Modificación
generation_config = {
"max_new_tokens": 128, # Reducido de 256
"temperature": 0.5, # Más determinístico
"top_p": 0.8, # Menos tokens considerados
"top_k": 30, # Menos opciones
"repetition_penalty": 1.2
}
Ejemplos de algunas preguntas
Explicaciones Técnicas
python deepseek_local.py "Explain quantum computing and its potential to revolutionize cryptography"
python deepseek_local.py "Describe the fundamental principles of blockchain technology"
python deepseek_local.py "How do microprocessors process binary information?"
python deepseek_local.py "Explain the concept of edge computing in distributed systems"
python deepseek_local.py "What are the core principles of quantum entanglement?"
Ayuda para Código y Depuración
python deepseek_local.py "Implement a memory-efficient algorithm for finding the median in a large dataset"
python deepseek_local.py "Design a robust error handling mechanism for distributed microservices"
python deepseek_local.py "Create a recursive solution for traversing a complex tree structure"
python deepseek_local.py "Optimize a Python script with high time complexity"
python deepseek_local.py "Develop a secure authentication system using modern cryptographic techniques"
Escritura Creativa
python deepseek_local.py "Write a dystopian short story about AI-controlled social credit systems"
python deepseek_local.py "Compose a narrative exploring consciousness in artificial intelligence"
python deepseek_local.py "Create a poetic metaphor comparing technological evolution to natural adaptation"
python deepseek_local.py "Write a speculative fiction piece about interstellar communication"
python deepseek_local.py "Develop a character study of a sentient AI struggling with ethical dilemmas"
Guías Prácticas
python deepseek_local.py "Comprehensive guide to implementing microservices architecture"
python deepseek_local.py "Step-by-step process for conducting a thorough code security audit"
python deepseek_local.py "Detailed workflow for machine learning model deployment"
python deepseek_local.py "Best practices for designing scalable cloud infrastructure"
python deepseek_local.py "Complete tutorial for setting up a continuous integration pipeline"
Análisis Conceptual
python deepseek_local.py "Deep analysis of privacy implications in big data technologies"
python deepseek_local.py "Comprehensive comparison of different AI alignment approaches"
python deepseek_local.py "Philosophical implications of artificial general intelligence"
python deepseek_local.py "Systemic risks of autonomous weapon technologies"
python deepseek_local.py "Interdisciplinary perspectives on technological singularity"
Lenguaje y Traducción
python deepseek_local.py "Analyze the linguistic evolution of programming language syntax"
python deepseek_local.py "Explore the etymology of technical terminology in computer science"
python deepseek_local.py "Compare communication patterns in different programming paradigms"
python deepseek_local.py "Linguistic analysis of code comments across multiple programming cultures"
python deepseek_local.py "Investigate the semantic nuances in technical translation"
Escenarios Hipotéticos
python deepseek_local.py "Simulate global economic impact of complete automation"
python deepseek_local.py "Predict societal transformation with breakthrough neurotechnology"
python deepseek_local.py "Model potential outcomes of universal basic income implementation"
python deepseek_local.py "Explore civilization scenarios with unlimited renewable energy"
python deepseek_local.py "Analyze potential global changes with radical life extension"
Comentarios
Publicar un comentario